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Summary of Completed Work

The object of this grant is the analysis and desi gn of decision procedures 4

that have stable , good performance in statistically ill — defined environments. —

Such procedures indicate the way to des i gn powerfu l receivers for systems

whose statistical behavior can not be described precisely (due to incomplete

availability of data about the system behavior).

In the framework of this i dea the following progress has been already made:

1. Different distance measures have been studied for use as

performance criteria for robust estimates . Careful evaluat i on and comparison

of these distances was done and their sim i lar ities , advantages and disadvantages

were carefully stated . It was observed that some of these distances are more

natural ly related to the estimation problem and that in cases in wh i ch they

are equivalent , the desi gner may use the one that is computationa ily or

structurally more conven i ent. The use of the Vasershtein distance was proposed

and used as stability measure for estimates in statistically contaminated

environments. This distance is naturally related to the commonly used performance

measures in parameter estimation . Through the use of the Vasershtein distance ,

qualities of powerful robust (with uniformly good performance inside a family

of data statistics) estimates were found , when the observable data are dependent.

For dependent data also robust estimates that perform wel l in the presence of

small number of discrete data were studied . Such analysis Is valuable in cases * 0
C

that the engineer must make his decision in rea l time.

Some of the work mentioned in this paragraph is included in this report, whi leg

;t. 3nd/o! sptci,á~some of it Is still In progress. 
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2. A thorough study of the work already accomplished (by the author

as well as other investi gators) on nonparametric statistical procedures in

the presence of small number of discrete data was done and included in a

book on the use of nonparametric procedures in Communication Systems.

3. A feature select i on problem was studied , when several distance

measures are used as discrimination criteria. This helped for a better

understanding of the qualities of the distances . It was found that the

feature extract i on al gorithm is sometimes independent of the criterion .

This allows the maintenance of a single feature construct i on mechan i sm that

works equally well for several systems with different specifications. This

feature select i on algorithm is then robust.

4. A sequencial procedure for clustered data was proposed and anal yzed .

This procedure appl i es to several stages of statistical information about the

system and it varies from the known procedures in the fact that data collect i on

costs are included and the data clusters considered are finite in number.

The results are therefore nonasynpotic and they app ly to any problem in wh i ch

the data are collected sequentially in clusters and there is a preassi gned

max imum number of such clusters available. The results have been tested

numerical ly for some systems with given specifications.

5. Hampel ’s general qualitative definition of robustness of sequences

of estimators on memoryless observation processes was generalized to stationary

processes. Structural properties of the estimates were found in this case

and based on these properties the des i gn of robust estimates that operate on

dependent data is now in progress.
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6. The constructive analysis of robustness completed by the author is

being used now in the performance analysis of communication Networks at

Bell Laboratories .

7. The discrimination of Gaussian processes has been studied and efficient

computat ionally methods have been found . This method l eads also to efficien t

discrimination of contaminated Gaussian processes.

In twelve months , one Ph.D. thesis and one book have been partially

supported by this grant , three papers have been submitted to journals , four

conference presentation s have been made, two University and three Bell

Laboratories reports have been produced . Finally, two seminars at Bell

Telephone Laboratories have been presented .

In what fol l ows, a list of publications supported by this grant , and

some of the work accomplished that is not included in the semiannual report

dated May 6, 1976, are presented .
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Comments on the Accomplished Work From Scientists in the Field

The constructive analysis of robustness with the use of a Vasershtein

stability criterion has been considered as more naturally incorporation the

proper performance criteria in parameter estimation by people at Stanford

University and Bell Telephone Laborator i es, that I talked to. Also , the

extension of the analysis to data evolving from general stationary process

(rather than just process with independent data), has been considered important

for the understanding of robust estimates in the presence of dependent data

structures.

The study and evaluation of different distance measures and their

applications to the feature select i on problem has been considered val uable

by attendies of the 1977 Johns Hopkins Conference. The different distance

measures are used as different discriminant measures , each representing a

different class of problems . Their uniform evaluation and comparison that

has not been done before and the analysis of their value to the feature

extract i on problem has been considered a nice contribution .

The sequencial decision scheme included in the thesis enclosed here, and

more particular its version for two nonparmetric distinct classes has been

considered very valuable by scientists in pattern recognition . Its use allows

data savings as well as good performance for discrimination between two

statistically ill—defined data classes .

Workshops Attended :

1. 1977 Communications Workshop , Tuscon , Arizona , A pril 1977. 
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SOME PROBLEMS IN COMMUN I CAT I ON NENORKS

by

P. Papanton i —Kazakos
Bell Laborator i es

AB STRA CT

A genera l discussion is presented on some of the open prob l ems

in communication networks. Routing structures and causes for unsuccess-

ful commun i cation through the network are emphas~zed. Some open problem s

i nvolving sophisticated parametric as well as robust statistica l

algorithms are stated .

.‘

Work done at Rice Un i versity and supported by the Air Force Grant
AFOSR 77-3156
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I. Description of the Network

To understand some of the problems involved in reliably communicating

messages within the network, some basic network operation s must be described .

The smallest element (that is of any interes t to the network anal yst)

in a co~r~unication network is a center. A center consists of severa l units

that communicate directly with each other. Different centers communicate

through a number of routes , where each time the route one particular message

is carried on is chosen hierarchically. Each route consists of a number of

links that are, in general , connected to each other through tandems (switching

offices). Finally, each link consists of a number of single message carriers

that are called trunks , while the tandenis connect several centers. A message

orig inating at center A (figure 1) and with destination another center B

fol l ows a routing hierarch y described as fol l ows:

At first tries the direct route that consists of a single link

connecting the two centers (dotted line in fi gure 1). If all the trunks in

this link are functioning properly but are busy, the message tries the next

route in the hierarchy (route through A , T~, B in figure 1). If this route

is also wel l funct i oning but busy, the message tries the next route in

hiera rchy and so on, until it reaches the fina l route available to It (route

A T
2
T
3
B in figure 1). If this last route is busy or malfunct i oning, the

message fails to go through and a communication failure to B is recorded

at A.

~
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t The rejection of the message by a particular route due to full occupancy

(at the moment) of all trunks involved is called blocking . Under healthy

• network conditions blocking probab iiit ies can be assigned to each route

that correspond to a particular center pair (A,B) and are funct i ons of the

A to B communication load , the number of routes connecting A B , and the

number of trunks in each such route.

Suppose now that an “average load” time period is considered and the

coiTmiunication from center A to center B is studied . If in some of the routes

between A and B a link is malfunctioning (due to some faulty trunk), and

if center A is unaware of the ma l function , messages from A to B will keep

try ing this link with probability specified by the initial routing structure

and the “average load”. As a result to that some messages wi l l be ki l led

by the ma l functioning link and communication failures from A to B will be

recorded. Therefore, in the presence of faulty links which center A is

• unaware of, communication failures will be caused that are not just due to

overload and are not happening just at the hi ghest in hierarch y route.

The routing structure described above is based on a trade off between

economy and communication efficiency . The direct links (dotted line in

figu re 1) carry usually the highest portion of the message l oad , while the

hig her in hierarchy alternate routes are used during traffic picks and they

have capacity hi gh enough to secure good commun i cation when such p icks are

occurring and low enough so that they do not remain idle most of the time . 

~~~~~~~~~~~~
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The pe r formance of the network , as viewed by the users , is  measu red

through its ability to successfully respond to commun i cation attempts.

It efficiency as viewed by an outside observer is a comb i nation of two

factors: effectiveness in responding to communication demands , and average

degree of occupancy.

- 2. Some Open Problems

We are concentrating here on the performance evaluation of the network.

The following major question arises in this case:

Is it possible to evaluate the network per -~rmance at a particular

time , if yes what kind of data are required anc. 0W can such an evaluation

be effective without utilizing an excessive amount of information ? Also ,

how can ma l function s be l ocalized or even predicted with the use of economically

attractive methods?

In two Bel l Labs technica l memoranda that have not been cleared for

publication yet, the author analyzes the use of limited center—to—center

successful and unsuccessfu l communication completions for l ocating the

faulty links that cause the failures , and for continuously mon i toring the

quali ty in communication throughout the network. The al gorithms used are

economical not only because they only utilize a limited amount of information ,

but also because they are one step memory and computationally efficient.

However, assumptions as to the routing structures have been made that in

some cases need relaxation . Specifically, “average l oad” time periods are

observed and the routing probabilities are then considered unchanged . But ,

~~~~~~~~~~~~~~~~~~~~ _•_rtw : —  • —
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even during such time periods the l oad fluctuations may be momentarily

substantial , In which case “robust” algorithm s that are mostly insensit ive

to such load variations must be developed .

Furthermore , the effect of ma l functioning network links to the relation-

ship between communication messages throu gh them must be studied further.

Specifically, such links may cause “partial message killing ” as well as

interference between messages . These effects result in additional reduction

of the communication quality within the network.



- - - -_ - ---- - ——  - ---- - - - - - -- -- - — - •- 

~1

6

References

1. P. Papanton l -Kazakos, “Ust ~f link Call Completions in Quality Control”
Bell Laboratories technical memorandum in typ ing process.

2. P. Papantonl-Kazakos , “The potential of end-to-end call completion
measurements in Network trouble l ocal izat ion and quality control ,“
Bell Laboratories technical memorandum in process.

3. J.S. Kaufman , “Facu l ty-Trunk Detection Al gorithms Usi ng EADAS-ICUR
Traffic Data ,” Bell System Techn i cal Journal , Vol . 56, No. 6, pp. 919-976.

4. D. Kazakos, “Recursiv e Estimation of Prior Probabilities Using a
M i xture ,” IEEE Trans. I nform. Theory , vol. 11—23(2), pp. 203—21i.

5. P. Papanton i -Kazakos , “Some Performance Criteria I ncorporati ng Data
Dependence in Robust Estimation ,” Bell Laboratories Technical Memorandum
TM—77—3452—4, July 12 , 1977.

6. E.S. Page , “Continuous inspect i on schemes,” Biometrika 41 , pp. 100-115 ,
1954 .

7. H. Chernoff , Sequential Analysis and Optima l Desi gn , Reg ional  Conference
Ser i es i n A pplied Mathematics , Society for I ndustrial and App lied
Mathematics , Philadelphia , Pennsy l vania.

• • 
- • .-~------



~~~~~~~~~~~~~~
—

~~~~~~~~~~~~
-

H

1)

FIGURE 1



- - .~~~~~~ -.-.:~,--~-- ~~~~~~ ,— —---__.__-----
~~~~~

•.., 
~

- -,-
~‘.

Asymptotic Discrimination of Gaussian Processes

Dimitri Kazakos* and Titsa Papantoni_Kazakos**

Sta te University of New York at

and

Bell Laboratories

ABSTRACT

We present a theory on the asymptotic approximation of block Toeplitz

ma trices by block circulant ones. The method is then applied to the

calculation of the asymptotic Bhattacharyya distance B and divergence J

between two stationary vector Gaussian processes, in terms of the two

spectral dens ity matrices , F
1

(A) , F
2
(A). Specifically ,

1 2n 1 1B — lim u B — (2ir ) 

~1 1og (~ 2 F1(A) + 2 F
2
(.\ ) I

.

J — lini n J — (21T)~~~J 
trace [F

1
(A )F~~ (A ) + -

F
2

(A )F
1
1
(A) — 2IJdA

The above expressions are useful because of existing upper and lower

bounds to the Bayes error of misclassification. Furthermore, they can

be considered as distance measures in their own right. The availability

of efficient spectral estimation techniques renders them most useful.

* Research supported by NSF Grant ENG 76 20295.

** Research supported by Air Force Grant AFOSR 77—3156.
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I. INTRODUCT ION

It is well known that the Bayes dec ision rule is the optimal one

in decid ing between two statistical hypo theses with known prior probab ilities

and conditional probability density functions. One of the most common

statistical models for data is the Gaussian random process. In assessing

the performance of the statistical classif ier using the Bayes dec ision

rule, one is faced with the dif f icul t task of evaluating its performance

through the available expression for the probability of misclassification,

Pe:

Pc f min[n
1
f
1
(x5, 1T

2
f
2

(x~ ) ]dx~’ (1)

R~~~
where

n k
x — [x1 . . . x l  , x~ c R

f
1(x5, 

f
2

(x~) are the conditional p.d.f. and JT
] P 11

2 
are the pr ior

probabilities of hypotheses H1, H2. Clearly, numerical integration

techniques have to be used. Due to the high dimension of the integration

region, numerical techniques are costly and they do not provide under—

- stand ing of the influence of several parameters of interest in f
1
, f

2 
to

Pe. For example, if one wishes to reduce the da ta by some fea ture selection

techniques, the expression (1) cannot by useful in choosing the optimal

transformation of ~~ Also, (1) does not provide any feeling as to the

incremental reduction of Pe as n grows.

The following pair of bounds to Pe is known: (i I — ( 14  1

2~~w1
ir
2 
exp{_2B~) < Pe c (it

1
n
2
)~

’
~
2 
exp(—B ) (2)

—4
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,

8 exp{—2 J
0
) < Pc (3)

where :

B — —log J [f1(x5f
2

(xn)]hh’2dxI
~ (4)

— J [f
1

(x~’) — ~~~~~~~~~~~~~~~~~~~~~~~~~~ (5)

A lower bound tighter than (3) has been developed in [ 5]. It has

been shown in (1 6 1 that no upper bound to Pc in terms of 3 exists. In

the present paper , we will develop asymptotic expressions for

B ’lim n 1 B , J l im n 1 J (6)

in terms of the spectral density matrices F
1

(A) , F
2
(X). The motivation

lies in the fact that the spectral densities are among the first char-

acteristics of a process to be measured , and very efficient spectral estimation

techniques are available in the statistical literature. (1 7 ]  — [10].

The technique to be used is, we think, interesting by itself, and

useful in other applications. It is based on the asymptotic approximation

of block Toep].itz matrices by block circulant ones. A simuliar technique

was used in [11] — [13] for evaluation of rate—distortion functions.

The distance measures derived have several potential applications,

which are discussed br iefly in the section that follows. Those are:

(a) Feature selection in high—dimensional observation spaces

in pattern recognition.

(b) Clustering algorithms for the sane situations as in (a).

(c) Reduction of remote sensing data.

(d) Speech proèessing.

(e) Biomedical EEG signal analysis.

(f) Tone Detection in Telephone Networks. -

~

•-

~

- - -



r ~~~~~
II. ASY~~ TOTIC APPROXIMATIONS

A block Toeplitz knxkn matrix R has the form :n

R R . . . R -

o —l —n+l

i ç— . . . . (7)

R . . . ~~R R
n—l 1 o 

-

where R are kxk matrices. A block circulant knxkn matrix C has the form:
• n

_
C C C . . . C 

-

o 1 2 n—i

C C Cn—b 1

S S S

C —  . . (8)

. . C

S . C

C . . . . C C1 n—l o 
-

where C~ are kick matrices . Consider the knxkn matrix



7
1

VI
k 

W
2
1
k 

. . . ~~~~~~

W
2
1
k 

W
4
1
k 

. . .

1
V a — . .n~~~ ii (9)

V I ~ . . .

- W I
k 

~
2(n

~
i)
i

where w — exp(i2wn~~).

It can be easily shown that V is a unitary matr ix, i.e.:

V
;1 

— V~ , IV ~j 
= 1 (10)

Consider now the matrix

— ~~~~ V = V~ ~~ V (11)

Performing the multiplication (11), we observe that C is block diagonal :

C(0)

C(21Tn~~ )

C~~ — . (12)

5 — 1 -
C(2irn (n—i))

_ _ _  -
- 

~~~~~~~~~~~~
--
~~.• • - 

~~~~~~~~~~~~~~~~~~ 
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where, C(u) is a lock matrix function defined as:

- 
n-i .

C(u) — 
~ 

exp (—imu ) (13)
m-O

Consider , now the problem of finding the eigenvalues of C
0
. They are

solutions of the equation in x:

0 — ICn — XI
knI — - xIkn)V

fl I — Ic 0 — XI
kn I -

n-i
11 IC(2~mn ) 

— xI~I (14)
m—0

Thus, the kn eigenvalues of C are identical to the union of n sets of

eigenval.ues of the matrices {C(2trmn~~) , m — 0, . . . , n—fl . Let us

now def ine the weak norm of an sxs matrix A — (a
u

) as:

— [8 ’ 

~ ~ Ja ij I
2
J~~

2 
— [~

_l 

~ Jq j
~2]
U2 (15)

i—l j— l i—l

where (q1 . . . q5) are the eigenvalues of A. Also, we define the

strong norm IJ A fl as:

h A il — max l~~I (16)
i

If a
u 

are kxk matrices and A is ksxks, we still have:

1A1
2 

— 
—l 

~ j a~~ j~ (17)
1—1 J—l

Let (A~)~ (B) be two sequences of Nerniitian sxs matrices. We say that

they exhibit “mutual approximation”, denoted by A ‘p.. B , i f :

a) fi A011 II B h i  , jA~ j~ 1B~1 are all bounded from above by a

finite number M independent of n.

b) lii jA5 
— B

0J 
0 (18)

fl4~~



Let ~~~~~~~~ , (b~
n))~~,1 be the eigenvalues of A0, 8n correspondingly.

We say that the sets (a~~
’
~) , {b~~~) are “asymptotically equally distributed ” 

-

in the interval [—M ,M) if

Ia~~i < M  , ib~~~ I < M  ,V k,n

and for any continuous function f(.) on [—M ,M ) we have

n
lu n—i }

~ (f(a~~~) — f(b~~~)] — 0 (19)
n - ~ k 1

The following theorem of Grenander and Szego [14] will be used .

Theorem 1: Let (A ~}. (B 0
) be two sequences of Hermit ian matrices

with eigenvalues ~~~~~~ (b~’~~}. If A ‘.‘ B , and either limlA l

or iimIB0j exis ts, then ~~~~~~ {b~~~) are asymptotically equally

distributed .

We have found until now that the kn eigenvalues of a block circulant

matrix of the type (8) are grouped according to (14). However , we are

‘4
interested in asymptotic expressions of eigenvalues of covariance matrices

• of the type (7) with R_k — R.,~. We will therefore approximate the block

symmetric Toeplita matrix

R R . . Ro 1 n—i

i (20)

Ri

R . . R R
n—I. 1 o

by the block circulant one .
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There is no unique approximation by a block circulant. A convenient

one will be chosen next. It is a matrix generalizat ion of the circulant

approximation used by Grenander and Szego [14). Let F(A) be the spectral

density of the stationary random process in question. We assume that

suplF (A ) I < M  < 4~
A 

(21)
0 < m <  inf lF(A) I

A

Let -

I (l— ~k~/p-) R
k for I k i  < p <

R~~_ f  ‘(22)
L 0 Otherwise

— {~~
f i~~~j~ 

(23)

and

F (A) — (l— IkI/p) ~~~~~~ — i~ ~~~~ (24)
k——p k—-p

Consider the bbock—circulant matrix

• - L — V L V ’ (25)

where is a block diagonal, with diagonal blocks:

{L0} — F (2irmn~~) (26)

and where V~ is given by (9). It is easily shown that:

- n~
l 

e
211ij(m_8

~~~~ F (2wJ n~~) (27) 

-• -- -~~~- - - - - -~~~~~~~ -~~~~~~~~--~~~~~~~- - - -- •~~~~~-~~~~~~~~~_ _ _ _ _ _ _ _
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We need to calculate the differences

- ~i~2 , - i-f

We have:

• Itn — 1u1
2 

— 2n 1 

m~l 
mLR’1

2 
< 2pn~~ ~~jR j.

2 (28)

I1~ 
— if ‘C 2n~~ ~~ 

m2p 2(p_m)J.R~j
2 

+ 2n~~ ~ 
(n_m)1R

~
j2 (29) -

m l  m~p+l

Due to (21) we have

m-0

• and thus for a given c > 0 we can pick a p so large that 
~ J.R~.I2 

< c.
m p+l

By choosing first p and then n sufficiently large, we can make the

distance IL — R 
~ 

suff iciently small, i.e.:n n -

IL0 
- ~ ~~~~~~ + [k

2
n~~ + 2c] 1~’2 (30)

L is Hermitian and bounded, and its nk eigenvalues are the union of the

eigenvalues of the n matrices {F (2irmn~~) , m — 1, 2 , . . . , n}.

Let h
q(P~U) be the q

th 
largest eigenvalue of F (u). It can be easily

shown that h
q (P~U) is a continuous function of u. According to Theorem 1,

for any continuously differentiable function g on [in ,M ],  we have:

n r2n
lu ~—l ~ g(h (p, 2vmn 1)]  (2w)~~ J g[h (p,u)]du (31)q q

Also ,

IJ (8 (h q(Pi
u)J - g[h (u)]}du~ ~ A • 

oJ

211

lhq(p,u) — h
q
(U)l dU (32)

-_
-

~~~

-.

~~

--

~~~

• ,

---—--- • -~~~~- •-- - •~~~~~~~~ 
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where h
q
(U) is the qth eigenvalue of F(u) and A is a bound on the first

- • derivative of g. Thus, as p-~~, the right side of (32) goes to 0.

In conclusion, if p,n-~ in the manner prescribed in the development

of (30) , we will have:

( 
— 

0 —l
I 

- 
- 

him n ~ gEh (p,2inun I)] — (2v) 
J 

g[h (u)J du  (33)
n ,p-~~ ~~ 

q q

(33) was developed by an asymptotic approximation of the block circulant

• matrix R by the block circulant matrix L - Simpler block circu]antn n

approximations to R may be developed , along the lines of [15], [161,[17]

but this would require more restrictive conditions on F
1
(1), P

2
(A) than

(21).

In the following section we will apply equation (33) to the calculation

of the asymptotic expressions given in the abstract.
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III. ~.SYMPTOTIC EXPRESSIONS

We are now considering two stationary , k—d imensional vector

Gaussian processes . Let x~ (x
1 . . . x )  be a sequence of n vector , zero mean

observa t ions , and let the corresponding covariance matr ices  be:

— E(xfl(xfl)tIHj] ~ i — 1, 2

R R - . Roj lj  n— 1 , j

R R
iJ oj

R — 
- 

(34 )
- nj .

R . . R
n—l ,j oj 

-

The Bhattacharyya distance B is then expressed as:

— log~2~~i 1 
+ 2~~i 2I - 2~~1ogJR 1J - 2 1

Ji- 2J (35)

and the divergence:

2J — trace [R + R ’R — 21] (36)
n n m 2  nl n2

For the calculation of B, we observe tha t :

nk—i I — I —l rn 1og~ R 1~ n L log d~
i—i

where (d
1

) are the kn eigenvalues of R 1. According to the theory ,

they are asymptotically equally distributed to the eigenvalues of a

block circulant approximation L .  Thus,



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~-1 ~ ~ — v i. v~~v C’v~ - v L L 1v~ (40)n m 2  nl n2 n n l n n n 2 n n n l n2 n

where V is the unitary matrix (9), and L 1, L 2 are block diagonal

matrices correspond ing to the two p—modificat ions of the spectral densities

as specified by (23), (24). Thus, the nith diagonal block of L
1
L~~ is:

(L 1LI) — F 1(2 1T mn 1
~) F~~ (21Tmn~~ ) (41)

where

F (A) — (l—IkI/p) RkS
e
1
~~ 

, s — 1,2 (42)
k-—p

The kn eigenvalues of 
~~~I.R1 

are thus asymptotically equally distributed

to the union of eigenvalues of the n kxk matrices

(F
i
(21 mn

~~
)F1(21Tmn

~~
) , m — 1, . . . , n)

Let hq (P~ 21Tmn 1) be the qth ordered eigenvalue of the matrix

F 1( 2 n 1)F~~ (2ir mn 1). Using (33) with g(x) — x, we find :

21T

him n~
1 

~ hq (P~ 271mn 1) — (211)~~ J h
q

( U ) d U  (43)
n l  o

where, h
q
(U) is the qth ordered eigenvalue of F

1
(u)F2

1 (u). Summing over

q, we have :

his n tm trace 
~~~ 

(211)_ l J  trace F
1

(A)F 1(A)dA (44)

Collecting terms, we find :

2J - (2nY 1f  trace[F
1

(A) F~~ (A) + F
2

(A ) F~~(A) — 21]dA (45) 
-

It is interesting that (45) can stand on its own as a distance measure.

(45) has found applicability is speech processing, for measuring the

hi~. —-



distance between two sounds in a subjectively meaningful way [19]. In

[19], the scalar case k—i was utilized.

Other applications of the two new distanc measures are envisioned

in EEC signal analysis [201—122]. It is also plausible that a distance

measure of the type (43) or (38) may be a good clustering criterion ~~~~
-

the space of spectral densities. If one wishes to “cluster” EEC’s

for the purpose o~ identifying “disease clusters”, (38) and (43) may be

useful measures due to the availability of spectral density estimates

of EEG’s [20]. Furthermore, the association of (38), (43) with the

probability of misclassification, is an intuitively appealing factor.

It can be easily shown that J(F
11F2
) is convex in F

2 
for fixed F

1
,

while B is neither convex nor concave. This is an advantage in favor

of 3. On the other hand , B provides better bounding expressions to the

probability of misclassification than 3 does.

The geometry of in the space of probability measures has been

analyzed in [231, [24], and several convenient geometrical properties were

established.

A criticism against B is that it is not a true distance measure
n

because it does not satisfy the triangular condition. However, we shall

show that there is a one—to—one correspondence of B to a proper

distance measure.

Let

— H (f
1(x5,f2

(x15)’. { j• (f 112 (x~ ) — fi/2 (xn)] 2dxn)l/2 (46)

H0 
is the Hellinger distance [1] between f1

(x~), f2(x0), and obviously

satisfies the triangle condition. Furthermore,
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,- - . • - •

2~~H
2 

— 1 - J [f
1
(xO)f

2
(xfl

)3
l/2dx0 - 1 - exp (—B~)

Drawing further from the results of [14], we can show that:

- Bj ~ k3
n h/2 (48)

Thus,

• n -lexp (_B
n
) — b d

where b — exp(—B), d~~ — exp ( c n~~
’2
). Substituting in- (45), we have:

b — d [l—2
1
H
2
]
11
~ 

(49)

As n-~~, d ÷1, thusn

b a 1 12
_l
H
2
)
l/n (50)

Equations (47), (48) give a one—to—one correspondence between b and H .

The function relating them is dependent on n, but has a simple structure.

In Figure 1 the functiorRl relationship is drawn.

Experts in the areas of feature selection and clustering techniques

in Statistical Pattern Recognition have observed 125] — [29] that both

methods are computationally expensive and exhibit strange behavior in

high—dimensional measurement spaces. It is envisioned that the following

two—step techniques m~’y alleviate the above problems .

(I) Clustering

(Ia) Estimation of the spectral density F
1
(A) from the ith

observa tion record

{x~(k). k > 0) , i — 1, - . . , M



— -- --- -- ---- -~~~ —~~~- —--- —~~~~~~- - 

(Ib) Clustering the M records in the space of the measured

F~(A) and using as distance measures the numbers B or J.

(II) Feature Selection

(h a) Same as (Ia). For M—2.

(IIb) Find the linear kxa , a < k transformation A that reduces

the amount of data and maximizes 3 or B.

The point of view in proposing tha above methods is as follows. In

practice, any time ser ies (x~ (k) , 1 < k < T) observed for a long time

interval T, exhibits statistical dependence only for pairs of samples

that are neighbors in time . In clustering T—dimensional vectors by the

usual techniques , a large T will impose substantial computing resource

requirements. Furthermore, the convergence of cluster ing procedures may

be in doubt, and the statistical independence between distant samples

is not utilized . It is believed that the idea of fitting models to the

data and then clustering the models according to 3 or B in a low—

dimensional space may alleviate the stated difficulties.

b

Figure 1 
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1. Introduction

In his classic paper , Hampel (1971) introduced a definition

of robustness in parameter estimation that accurately reflected the intu.i—

tive notion that a sequence of estimates of a parameter was robust for an

observation process ~i if another process v that was “close” to ji yielded

a “close” distribution on the parameter estimates. Hampel considered

memoryless or independent, identically distributed (i.i.d.) observation

processes and measured their “closeness” by the Prohorov distance on the

marginal probability measures. As he considered i.i.d. processes, his

underlying parameter depended implicitly only on these unknown marginals.

Ilampel then proved that weak continuous functional s on the space of 4
probability distributions defined robust sequences of estimators under

his assumptions. He also shoved his results could be adapted via an

alternative notion of robustness to weakly dependent observations , in

particular, observations that were close to memoryless in a Prohorov sense.

A critical part of his derivation was the fact that if two i .i.d.

processes ~& and v are close in a marginal Prohorov sense, then one could

construct a pair process p having i and V as coordinate processes and, such

that under p the sample distributions of two coordinate n—tuples x~ pro duced

by v and produced by V were close in a Prohorov sense with high probability .

‘P. Papantoni—Kazakos completed this work at Rice University , Houston , Texas.
tR. H. Gray is with Stanford University.

tThis research was supported by the Air Force Off ice of Scientific Research
under AFOSRA Grant 77—3156 and AFOSR Contract Fh~4 620—73—C—0065.
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Dur ing the past few years , a generalization of Ornatein ’s d distance of

ergodic theory (caned the ~~, “rho—bar ,” or generalized Ornstein distance)

has been shown to provide a similar control for sample distributions for

genera]. stationary and ergodic processes and , largely as a result , has

found numerous applications in information theory (see , e . g . ,  Gray ,

deuhoff and Shields (1975) , Gray , Neuhoff , and Onura ( 1975) ,  Gray , Neuhoff

and. Ornstein ( 1975)).  In this paper we show that using the p distance

as a measure of closeness of the observation processes , there is a natur al

qualitative definit ion of robustness for all stationary ergodic processes ,

that a weakened version of Hampel ’s weak-cont inuous estimator sequence

implies robustness and that all of Hampel ’s result s have analogs in th is

more general case. Our formalism does not quite contain Hampel ’ s in t he

case of i .i .d .  processes and parameters depend ing only on the marginal

probabilities, but is a strict generalIzat ion in some cases such as when

the metric on the observation alphabet is bounded or when the class of

probability measures considered is constrained to have a f in i t e  second

moment (see Lemma 2. 1) .

We also not e that we need not confine estimates to take values in

Rk as Hampel does , but instead we only require that the parameter alçha—

bet be a complet e , separable metric (Polish) space. Hence function valued

parameter spaces are allowed.

As a side result , some easy generalizations of the convergence of

sample distribut ions [Parthasarathy ( 1967)] for stationary and ergodic

processes are developed .



--

2. Preliminaries

Let (
~, be a measurable space such that fl is a complete,

separable metric space (or Polish space) with metric p and is

the Borel a—field generated by the open sets under p. Since ~ is

separable, there is a countable collection of sets = (C1; I = 1 ,2,...)

such that = a(~~
) ,  that is, Is the a—field generated by

Let be the space of n-tuples with coordinates in fl and d°

the space of sequences w = (...,w 11w0,w1,...), w~~E fl all i. Let

be the c—field of subsets generated by all rectangles of the form

I~ (since ~ is Polish = a@~ ), the c—field generated

by rectangles with B
1
€ 
~~2~

• Let be the a—field generated by

all rectat~gies of the form B = (w:w~€ ~~~ n 
� i � in ) ,  B

1
C ~~ Let ~

be a probability measure on the measurable space (fl , ~~) yielding a

prob:hility space ~~~~~~~~~ The sequence of coordinate functions

X :~~-4 defined by X( t~) = w~ , n = ...,—l ,O,l,... on (~

forms ~ random process and is denoted either by [~~~, p ., x J to emphasize

alphabe t 2, measure p., and name X, or simply by p. to emphasize

measure, or by (X
5
) to emphasIze name.

Let T:~~ -~ fl denote the shi f t  t ransformation defined by

X (Tw) = X~~1
(w). The process p. is stationary If p.(TF) = p.(F)

for all  F € 53~. The process is ergodic if TF = F implies p.(F) = 0

or 1.

a S ~~ nDenote ~~~~~~~~~~~~~ by w and define X :~i -+~ by

X~ (w) = (X0
(w), X1(w)~ ....X~_1 (t~))  = w’~. Let ~~~‘ denote the restriction

of p. to ~~~~~~~ that is, if F £ ~~, then p.~~(F) = p.(X~)~~ (F) =

p . (~~rw ~~ E F ) .

3



Let ir~ denote the class of all stationary processes with alphabet

fi and let TT~~ denote the class of all stationary and ergodic processes

with alphabet fl. To avoid confusion we will often use di f ferent  names -
‘

with different measures, e.g., typical members of Tfl
~ are [ca , ~~~, x]

and [ç
~, v , Y].

A process [n , p ., xJ is said to be i.i.d. If for every rectangle

B = X~~~~~~B
1

, B
1

€ ~~~~~~~ we have p.”(B) = n
~~~

)(B i ). Let deno te the

collecticn of al l  i. i.d. or memoryless processes and note that

Given t~ o processes p . , ’. € the generalized Ornstein distance~

or c d~~ ra’ice between p. and v can be defined as follows : for

n n n
x ,y ~~~~.. set

n—l
n n —l ~~-‘p (x ,y ) = n ~~~ c(x

1
,y
1
)

n i=0

and def~r..e ~~~~~~ as the set of all neasures p?~ on (fl5xfl5~ 8~~ B’~)

n n n
having — and ‘~ as coordinates, that is , p (ç~°)F) = v (F),

p~ (F<~~ ) = .~~(F), all FE B~. Define the ~th order distance

= iflf E p (2.1)p
p £ P (p. ,~~

, )

and the ~ distance by

p~~~, v) = sup~~~(p.
5
,
5) . (2.2)

If with a slight abuse of notion we also let and denote coor-

dinate functions on so that if z = (x ’~,y5) € Q~x &‘, then

X
5(z) = x~~, Y~’(y) = y

~
, then (2.1) also can be written

= m t  E P (X
n
,Y
n
)

€

4
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Thus ~~~ ,v ) measures the smallest possible expected distortion

between X~ and ~n over all stochastic links preserving the

probabilistic description of each. We note p is the Vasershtein—

distance between the random vectors and Y~ described by p.~~

and ~? [Vasershtein , (1969)). The following are some useful

properties of p for later use. 
-

PrQperties of ~ [Gray, et. al., (1975) ]:

(i) u n n ~ ~~~~~~~~ exists and equals sup

(ii. ) I! .~. and v are i.i.d., then p(p.,v) = p1G.~~, v ) .

(iii) ~4.., ) � p4k , r~) ÷ ~~~~~~~~~ 
v) (triangle inequality).

(iv) The distance can also be defined as follows: Let 
~‘4 ~

.,v)

be the collection of all stationary pair processes with coordinate

processes ~.. and v, that is, all measures p on (d” x n , ~~ x ~~
)

such that p(d°X F) = v(F), p(F X d~) = p.(F), all F £ x

(where we use T to denote the shift on ~ X ~ as well as on 
~

In a similar fashion let Pe~~~
V) denote the class of all stationary

and ergcdic pair processes with p. and v as coordinates. Define the

coordinate functions (X ,Y ):(~
°X ~~~~~-+ ~~X ~ by (X ,Y ) (x ,y) =

(X~ (x).Y~ (Y)) = (x ,y ). We have that

= m t  E p (X0,Y0) (2.3a)

p £ P (p , v)

5
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and i.f p . ,  p ~

E~P(X0.Y0
) (2 3b)

p

We note that (2.3b) follows from (2.30) via the ergodic decomposition

of stationary processes [see Oxtoby (1952) or Rohlin (1949)]. H

Another important property of p is that it is the closest that

generic (t y p i ca l , regular)  sequences of p. and v (those sequences

whose sa~ ale nv~rnges converge to expect &itions of enough functions to

determine the measure) can be m ade to each other in a limiting p

sense j (,riy , et . iii. , (1975)). In the next section we develop

a resui~ f~ ’r sanpie distrjbut1n ,~s s i m i l a r  to  t h a t  of i l ampe t  an ~1 Parth~~- .irath y

since the’ ezis~ ing ~ result is not directl y u se f u l  here because it tt :olves

a dI~~ i’r~~~ type of samp le avvrnge. The basic idea is that

cl ’-’s r ‘s; of two processes will imp l y t h a t  w i t h  hi gh p r o b a b i l i t y  the

proces’- ~~ 1T produce cloøe sample distributions.

Hnm r ~- l used the Prohorov metric between p.
1 

and to measure

the di~ t~~ ce between i.i.d. processes ~. and ~ . ~~~ can define a

Prohorov .~~stance between processes using a generalization of Moser ,

et. al ., 975) and this distance can be enaily related to ~ by

using the Strassen—Dudley form for the Prohorov distance [Strassen (l9c~5)

Dud ley (lS~ S)]: Define the ~th order Prohorov distance

In! inf (l:p(x~ ,y~ :p (x~ ,y~ ) ~
— fl~ f l,

~ (2.4)

which is the Prohorov metric between and ~~T1 w ttI ~ rcspt~ t to the

metric (which generates the product topo1o~~), anti

6
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114~,v) = ~~~~~ f l 4~~~p
fl) . (2.5)

It is known (Strassen (1965), Dudley (1968)] that a p~ achieving

the infiuZum exists. We have immediately using Chebychev ’s inequality

[as in Dobrushin (1970)] that it achieves 
~~ 

(i.e., B p p  =

in the Appendix it is shown that the infimum is a minimum for Polish

alphabets), then

p
n(xn ,yn :p~ (x5,y n)> €) � B

~~

and hence choosing p 4~~~~~y
fl
) €

2 
yields

p
n (x

n
,y

n :p
n
(xfl

,y
R
~)
> n~~ n ) 1~ 2 ) ~

whence

~~

~ ~~~~~~ (2.6)

so that c~ os~ness in p Is stronger than closeness in Prohorow. In

some cases the two distances generate the same topology , however , as

the following easy Lemma shows.

Len,a 2.1

(a) If p is bounded , then p~ and II generate the same topology

(and hence so do p and TI).

(h) Given a class ire, of processes p. such that there exists an

such that  B pp (X0,a
*)2 � 0

* 
< ~ , then p and fl

generate the same topology on ~.

7



Proof.

(a) Let be the largest value of p, then if p~ yields

It we have

� ~~~~~~~~ + ~~~~~~~~~~~~~~~~~~~

n n  n f l
f l ( p.  , V “~max 

= lt~(~ ,v )(l + 

~max~

and hence small 1l~ implies small p which with (2.6)

pr ves (a).

(b ) W e have similar to before that

Fp~~
,
5(X~ ,Y~

) � fl L~~, -”) +J . dP
n
(X
n ,Y n

)P~ (X
m ,Y

r
~)

x ,v
~
:o ( x

~
,y )>fl

~
(
~
i V )

Let G = ~~~~~~~~~~~~~~~~ ~~c— ” , ;~
’)) and let l

~ 
be the

indicator function for 6. ~in~e is  a metric , we have

Iron the triangle inequality and the Couchy—Schwartz inequality

E ~~~~~~~~~~~~~~~~~~~~~ t1~~~~,~
’
~)+E P~~~(x

”,n ’
~)16

+E p p ( Yfl
,a*

fl)l
6

TT (~
n

V
n)+(E p p ~ (X

fl
,a
*5)

2
)
l/
~
2
(E 

~~~~~~~

n *n 2 1/2 2 1/2
+ (E p p ( Y  ,a ) ) (B

� f l ( p .~~,v~) + 2p
*l
~
2
p~(G),

n y~ *1/2
= ~~~~ ,v )(1+2p

completing the proof as 
before.8
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We use p and not TI as a distance measure on observation processes

for several reasons, primarily because p has several properties useful

( for robustness (and other) studies that IT does not. In particular ,

(1) the sup It need not be achieved in the limit n -. ~~ as is ~~.

As a result there is no process definition for It = It(p.,v) analogous

to (2.3). This means there need not exist a single stationary p such

that p(x,y:o~ (x~,y5> It) � II for all n. The p yielding p,

however , guarantees that ~~ 
(
~..,v) = B p (X

0
,Y0
) = E p (X~ ,?) and

hence via Chebychev’s inequality it is true that p(x~y:p~ (x~ ,y’~)> ~ l/2 )

~ ~
l/2 for all a. This uniform bound for all a is crucial to prove

robustness. (2) If p. and v are i.i.d. , then ~ = p
1 

and hence

margina l closeness of p
1 ~n such a case guarantees process closeness

of p. The analog is not true for Prohorov , that is, it is not true

for i.i.d. that Tt4~ ,~~
) E1(p.

’,v’). It need not even be true

that gtven C> 0 there exists a 6 such that j1
1(p.

1 ,v1) < 6  implies

:~(u ,’.) < ~. Thus marginal closeness of Prohorov does not ensure process

closeness for i.i.d. processes. As a result , using fl~~ ,v) as a closeness

notion would not be a strict generalization of liampel’s definition of

robustness for i.i.d. processes. (3) The p distance between processes

can often be explicitly evaluated or bounded (as in the Gaussian case)

making it useful in applications. No general bounds to TI (except in

terms of p via (2.8)) exist. (4) It is p and not TI that allows

a simple demonstration that close processes likely produce sample functions

with close sample distributions (as in the next section). Hampel’s

Porohorov approach worked in the i.i.d. case because he was able to

produce an i.i.d. pair process p with the correct coordinates by

9
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simply taking the i.i.d. process with the marginal yielding

If p. and v were not i.i.d., p constructed in this way would not

have p. and v as coordinates. The p avoids this problem since It

has an equivalent definition in terms of processes.

As a final observation , one could also define a Prohorov distance

on processes via

p~,(x ,y) = E 2 N

it’ 4i.,v) = m t  in f ( r : p ( x , y : p~~(x , y) >  r )  � r)

p €

Thi s di~~:~ rce generates the weak topology on ~~, but it is of limited

use bec~~s’~ if 
“favors” times near zero .n determining the metric p .

It Is ~~e lim~ :i ng beh av ior of n
1
� 10  p(x1,y1) and not p t ha t

is imp r -ar.t  In most app l icat ions (such as robustness and problems in

infor’~at~ 3n theory). In particular , small p w i l l  be seen to force

—l
n E.~~~ :(x1

,y
1
) to be small for all n with high probability, 1’

is not “s:rong” enough to imp ly this.

Even though we have argued that p is the appropriate distance

measure on processes, the Prohorov metric is quite adequate as a

measure of distance of random variables , and hence for many interm ediate

steps we will use the weaker Prohorov distance to follow Hampel’s basic

approach where possible.

10



3. Sample Distributions

Hampel (1975) following Parthasarathy (1967) considers only

marginal sample distributions of the following kind : Given an n—tuple

X
r
~€ fl

fl
, define the measure p.

1 
on (fl,9~) by assigning probability

to each x~ , i = O,l,...,n—l (if , say , k of the x~ are

identical , this point gets probability k/n). This assignment gives

a measure p.’ on (fl,~~ ), via -

p.~~ (F) = E n~~
x I:x CF

Parthasarathy (1967) proves that for an i.i.d. process ..,
-* 0 , p.-a.e. (3.1)

x

We shall wish to consider more general processes and parameters depending

on the whole process and not just the marginal p.1 . Hence we wish to

estimate :iore than just the marginal p.’ f rom x’s. Given an ri—tuple

form an estimate of the entire underlying process as follows:

Form the periodic string ~ = ~~~~~~~~~~~~~~~~~ that is, ~ x
k k~~o dn
-lDefine the measure p. on (f~ ,9~) by placing probability a on

each string T
tx, i = 0,l,...,n—l (grouping together Identical strings

as before), that is,

-l
p. ~ (F) = a , al l  F € (32 )

X i:T 1
x € F

The process is periodic as defined by Parthasarathy (1961) since

fl T~F) = p.~~ (F), all F £ 9~. It is also easily seen to be

11
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stationary from (3.2). Furthermore, if TG = 6 and hence T
1
G

then if T~x € G for any I , then F~x C G for all j aid hence

p. ~(G) = 0 or 1 and the process is ergodic. The process p. has
x k -l 

X

restrictions p. which assign measure a to each k-tuple obtained

by viewing k :djacent symbols within x~ or an “over lap” k— tuple

constructed by ~~~~~~~~~~~~~~~~~ ,xk+i_n ), I = n—k+1,... ,n—l . In
1

particular , p.~~ Is the same as the Parthasarathy marginal sample

distribution. Note that only if k � a are the sample distributions

“trustworthy ,” but it is In fact the sample distributions ,a � k

that wI l t  be most important. This raises an alternate (and more common)

approac.~ of gi~;en x~ , define the restrictions (and not a process)

by ~.ssign:ng (n—k) 1 to each of the (n—k ) k-tuple within x~.

We do ncr take this approach since (1) it is useful to have a process

implying 311 the restrictions; (2) it is convenient to have a ’ be

the p rob . ib i li ty  of the atom s for all k and the result ing proofs are

simp ler; and (3) properties of pe riodic processes make it easy to

demons tr a:e that a certain seemingly reasonable conjecture is in fact

false. The two approaches obviously yield identical results for

fixed k and large a since the overlap effects die out as a -
~ ~~.

The main result of this section is the following generalization of

(3.1).

12
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Letuna 3.1

If ~Q,p.,X) is stationary and ergodic, then for any fixed k

lim~~~~~~
k
,p.
k) = 0 , p.—a.e. (3.3)

If , in addition , there exists a reference letter a* such that

E
p.
p(X

0,
a*) ~ < (3 4)

then for  any fixed k

u r n  
_
~~p.

k k ) = 0 , p .—a .e .  (3.5)

Pr of.

Fo ’- ary 6 C the Birkhoff ergodlc theorem states that with

,~—probab~.lity one

n—l— l n—i 
-

p . = ~_ i{ E 
~~~~~ 

+ 
~~~

x 1=0 i=n—k-i l

(x
i,... ~~~~~~~~~~~ P xi+k_n)~

Hence since is countable, there is a set A € such that

p.(A) = 1

and if X E A ,

p. ~ (G) •~~ p.
k
(G) , all G € .

x n-~~

Since generates 9~ , we have from Billingsiey (1968) that for

x C A , .~~ p.
k weakly and hence (3.3) holds.

If in addition (3.4) holds , let

B = (uk,yk:pk(u k ,yk)> ~~~p. k k ))

13
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ist p € P4i 
k

p .
k) yield r~(p.

k
p.
k
) that is, p(B) � fl~4~ 

k
p .
k~

let Uk denote the coordinate random vector of p corresponding to

p. and v~C that corresponding to p. We then have
x ‘

~
‘k~~ 

k p.k ) ~ Eppk(U
k
,V
k) 

~ II~ (p. 
k

p.
k)+E p (U

k
v
k)l (U

k
v
k)

� ~~~ 
k
,p.
k)+k

_ l k
~
l
E p(U

i
,a*)l

B
(~~ ,V

k)
x 1=0 p

k-l
- k

1 
E E p(V 1,a*)i8

(Uk ,Vk ) -
i=0

and hE’nc.~ frori the Cauchy—Schwartz inequality and the stationarity of

p. c itEa

~ ~~~~~
k
,p.
k)(l_k

_l E (E p(Vj,a
*)2)~~~ 

-

+ k 1 ~ (E p(Vj,a
*)2)h/~

2)

~~~~ 
k

p .
k)(1~ (~ p (u ,a

*)
2
)~~

2 
+ (E p(y

0
,a*)

2
)u/2)

~ ~~(p.
k
,p.
k)(l+(fl

_l 

:~: 
p(xj,a

*)
2)l/2 +

*2  *

As n -~ , the sum goes to E p(v
0,
a ) � p and hence with p.

probability one

~~~ .~~(p.
k

p .
k) � u r n  j~~~(p.

k
,p.
k
)(l+2p

*hl~2 ) 0

comp leting the proof.
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I.
One might hope that a stronger result would hold to the effect that

-. 0 or ll4~~~,p.) 
-, 0 ‘L -e.e. That p~~~~~,p.) -. 0 Is impossible,

however, even for general finite alphabet processes since in that case

with p being the Hamming (discrete) metric convergence in ~ (in

this case called d and being Ornstein’s distance) implies convergence

in entropy [Shields (1975)], yet periodic processes have entropy zero

and hence cannot converge in p to a process with nonzero entropy.

- 
Furthermor*~, In this case we have seen that p and IT are equivalent

• metrics and hence it is not possible for It(p. ~,p.) 
-~ 0 p.—a.e. for

- 

x
nontrivial processes. Roughly speaking , sample distributions can describe

the k
th cr~1er restrictions of a process to arbitrary accu racy as

thn —~ °~ and any fixed k, but they cannot approximate the k order

restricttor s for all k simultaneously , thereby forcing SUPkflk to

zero. ThIs observation leads to some of the def initions generalizing

those of ~anpel to stationary ergodic processes.

t
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4. Sequences of Estimators

A sequence of estimators (Sn) is a sequence of measurable

mappings S~ :fl~—. A , n = 1,2,... where the parameter space A is a

Polish space with metric d and 5A is the Borel a—field of subsets

of A. Unlike Hampel , we do not consider S
n to depend on its argument

x~ only through p.’, that Is, Sn
(xn) is not assumed to be invariant

under permutations of ~~~ In addi t ion , A need not be with the

Euclidean i~Letric as in Hampel , allowing more general function spaces.

In some cases there will exist a “true” va lue S~~) of the parameter

of the ~~ruc~-ss p. being estimated by the sequence fs ). Analogous

to a speci3l case considered by Hampel , if S:iri,~ - A is the mapping

giving th ~- 
“true” parameter , one candidate for the sequence of estimators

is S , :~~ = S(
~~n

)p the p3rameter  associated with the periodic process

obtained ~roui the sample n—:uple. Examples are the sample mean

n -1~~-n-l(S~ (x ) n 
~
- = 

xi
) and sample correlation

(S (x~) = n ’ ~~~~~~ X
1 d

X
( l ) d  

) which are simply the mean and

cor.,’ ’t. - ion of the process 
~~~ 

Certain results analogous to those of

Hampel ~ il be proved for this special case.

Definition

(i) A parameter S:ii~ -
~ A Is said to be weakly continuous at p.

with respect to the p distance if given €> 0 there exists a

6>  0 such that p(p.,v) < 6 implies d(S~j.a),S(v)) 
<

(ii) A parameter S:~~ -~ A is said to be strongly continuous with

respect to the p distance if given € > 0 there exists a positive

integer k and a 6> 0 such that if p
k4~~,v

k) < 6, thai

16
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C

d(S 4i.),S (v) )  < €.

(iii) A parameter S:ii~ -~ A is said to be,.simply , strongly continuous

( (or strongly continuous w ith respect to the Prohorov distance) If

given E> 0 there exists a positive integer k and a 5 > 0 such that

if J~~ p.k~~
k) < 6, then d(S4i.),S(v)) <

It follows from the properties of the distance that strong continuity

• ~ strong continuity with respect to the p distance ~ weak continuity

with respect to the p distance.

The strong notions of continuity are required when considering

sample th~stributions as there the conditions of ILK or ~~ being small

can be -~~t , whIle the condition of small p in general cannot.

If ~nd~r ~ a sequence of estimators [S converges in probability

(under _ ) to a value S~ (p.), that is, if for all €> 0

lim p.(x:d(S (x~),S,~(p.)) > £) = 0 , (4.1)
a -+

then we cay is consistent for S~~~p.) under ~~. As pointed out

by H c -p e . ~~~~ need not be the same as the “true” parameter value

S(j.~.), b~t in such a case S~ (LL ) might be a better definition of the

“true” p3rameter given the S.

A sequence of estimators ( s )  on a process ~ Induces a family

of probabIlity measures on (A,LA
) defined by

p.~ S
’(F) = p.~~(S~~(F)) , all F € LA (4.2)

17
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Lemma 4.1

If S:ii~ -, A is

(I) a strongly continuous parameter at p. € m~, or -~~ H

(ii) a strongly continuous parameter at p. c with respect to

the p distance and there exists a reference letter In the

sense of (3.4), -

then the sequence of estimators (S
n) given by S(x~) = S~(p . )  Is con— 

- -sistent for S at p..

Proo t.

(I) GIven C> 0, chose k, S such that it ~~
k

vk) < S implies

d(S~~),S(v)) < e. From Lemma 3.1, there is an n 0 sufficler

large to ensure that if a ~ n0, 
then ~ (x:lT~~~ 

k
p.
k) > 5) � C,

a � n~ , and hence p.(x:d(S (x
m
),S(p.)) > €) � p .(x :II~~~ 

k p.k ) > 5)

� ~, n � n
0
, co~ip1eting the proof. 

-

(II) As in (1) with 
~k 

replaced by

Lastly , let Ttd denote the Prohorov distance between measures on

(A ,LA ) with respect to the netric d.

18
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5. Robust Sequences

Definition.

Given a collect ion of p rocesses iq ~~ ii ~~, a sequence of estimators

(5) is robust for Tfl, at a process p. if given C> 0 there is a

6> 0 such that for all a and all processes v € In,,

(A) ~4~,V) <6  
~ Ud

(
~~
S

fl .
v 8 )  ‘C £

The definition is intuitively the same as Haap.l’s: A robust

sequence is one for which close observation processes imply uniformly

(over a) close estimate distributions. Rampel defines robustness

• only at i.i.d. processes and only for the class of all i. i.d.

processes. In the case of iit~, (A) is equivalent to

~4&,v) = p
1
(p.~~,v~

’), the marginal distance being small. Since

1 1 2  — 1 1Ul4~ ,v ) � p
14i. ,

v ), robustness at an i.i.d. process for in cur

sense is slightly weaker than Ranipel’s robustness. If p is bounded

or we add the constra int to that there exist a reference letter as

in Lemma 2.1, then for iT~~ the two notions for robustness at an i.i.d.

process are equivalent.

The following auxilliary definitions will prove useful.

Definition.

(1) A sequence of estimators (s
n) is asymptotically robust for a

collection ‘r, Cm,~ at p. if given £> 0 there is a 5>  0
and an a0 such that for all n � a

0 
and processes v € in,,

(A) holds true.

(ii) A sequence of estimators (S
n) is small samp le robust for a

collection at p. if for any integer n
0 

and any

19
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€ > 0 there is a 6 > 0 such that (A) holds for all

a = 1 ,2,... ,n0.

Lemma 5.1

If a sequence C s) is both asymptotically robust and small sample

robust for r~ at p ., then it is robust for r~ at p..

Proof.

Given C> 0, choose 5~ , n~ such that (A) is satisfied for

n � n
0 ~~~ then so that (A) is satisfied for n � n

o and set

5 = m i n (~~~,S 2 ) .

T~~ f : ’l lowing  technical defInition :s an asymptotic weakened versIon

of H pe~ ’~ cocdition (B) and will play a sinilar role.

D.~-f!-~ ti O r t .

C’~~I:Ion (B) is said to be asytnptctically satisfied for a sequence 3
of estina~~ rs s~) and a process p. if given C > 0, ~ > 0 there

exist p~~~~:t ire integers k and n0 and a ~~> 0 and for all n �

a set F € such that
r. ci

> 1 — (5. 2)

and If x~~ F , y r
~€ ~

n and

< 6 , (5.3)

where is the Prohorov distance with respect to as in (2.4), then

d(S~ (x
t
~),S (y

fl)) < £ . 5.4

20
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If we forced = 1, then the above condition would be identical

to Hampel’s except for the fact that we allow a general k (which may

depend on C and a) while he requires k = 1. Hence our conditi on

Is weaker (h is condition (B) implie~; ours , but not conversely). The

following is analogous to Hampel’s Lerviia 1.

( Lemma 5.2

If ~ C and (s) asymptotically satisfy condition (B), then

(s1~ i~ asymptotically robust at p..

Proc f.

Ch ’ :s’- £ as in (A). For (B) use the same E , set ~ = €/2

and le~ k, 5.~. n~ , F~ be the promised objects for n ~ n0. Choose

-i 2 . a n5 = m i n ( 3, C 4). The key to the proof is that given . x and y

the meas :~’ p ’ °‘~ which assigns probability n 1 
to each

pair k—:-~~~
.
~ x

1, 
I = 0,1,... ,n—k ,

I = n-k- ..... ,n-l , is in ~(~~k,p.
k) ai~ hence

n—k h—i
— k k - l ’~-~ k k  -l ~~~� = ~ ‘-~ Pk

(xI ,Y I
)
~~ ~ ~~~~~~~~ ;x

I+k f l;x -‘ 1=0 i=n—k+l

~i
’•
~~ ‘~

‘i k~~~
n— 1

—l ~~~‘ n n
= fl Li P(X~ .Y1

) = Pn(X ,y 
) (5.5)

1=0

for al l k (an d hence 
~~ 

-i ~) is small if p(x” ,y”) is).
x y

Let p be the - stationary process yielding E~P(X0~
Y
0) = p(p . ,~~i)

we have

21
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E 

~~~ 

k
,p. 

k) � E (n~~ 

n
j
~I 

p(X1,Y 
)

p 
~ 

p 
1=0

= ~ (~~,v) 
� 6 (5.6)

and hence from Chebychev’s Inequality

— k k 1/2 < 1/2
p(x,y:P~(~ ~~ 

> ~ ‘ ~
x y

whence

> S~ ) �

p(xpy :rt
k
4&

fl .~~ fl
) > ~1/4) <

and

P(x ,y:x €F
fl
. k
(
~~fl

P.
~~fl

) ‘C 5~
’2) >

~ l—C/2—C/2 = 1—C

which fro~ 03) implies that with probability 1—€ d(S~ (x’5,S~ (y~)) < €

and hence d 
S

1
,v~S~~ ) ~ C , completing the proof.

The following definition I s  a weakened version of one of I{ampel’s

corresponding definitions.

Def~ rtition.

A sequence of estimators (sn) is continuous at p. if given

E .>  0, there exist positive integers k, n0 and a 5 > 0 such that if

a a m a
n ,m � n 0 , x c a , y € f l ,  and

1.~~p .
k

p .
k) < 6

X (5.7)

k k 6

- - -— 
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then

d(S
n
(X5)

~
S
m

(Ym)) < € . (5.8)

If a single k works for all € , we say C S )  is continuous of order

k at p. (or continuous at

Hampel’ s definition of continuity of an estimator sequence is what

we call continuity of order 1 (or at p.’). Hampel essentially restricts

his estimator sequence to depend only on the marginal properties of the

process. Analogous to our strong continuity of parameters, we allow the

estimator sequence to depend on higher order properties, but for a given

€ > 0 t::ere must be a finite k such that matching sample distributions

of order k to the underly ing .i~~~ forces the estimators to match up for

long ob~~rvation sequences.

Ana~ o~ous to Hampel’ s special case , if a parameter S:~~ -, A is

strongly ~~ntinuous, then the sequence of estimators (S~ J defined by

S (xc) ~~~~~-. ) is continuous.
n a

x
The following lemma is a strict generalization of Hampel’ s Lemma 2

since our continuity notion for (S
n
) is weaker than his.

Lem.’a 5.3

If ~s ) Is cont inunus at p . € ‘T~~, then , under p ., (s) is

cons ist ent for some S,,G~.). that is , for any 5 > 0

lim p .(x:d(S (x~
’),S 4i.)) > 6) = 0

23
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Proof.

For a sequence ~ ~
.) choose 6~ 4 0 and a1 ~ such that the

continuit) ondition Is fu lf illed for n ,m >  n~ (for each i). Define

for positive integers k,n and 6 >  0 the set

B~ (k~O) = (x~~~~~~~ k ,p.k ) < 6)

and note from Lemma 3.1 that for fixed k,5

lu ,.~~(B (k,5)) = 1 (5.9)
n _,-~~

From the continuity condition , if x~ € B (k
1,61

) ,  y~ C B (k~ ,6~),

� rt1 , then d(S (xn),S(ym)) < €; and hence the set

G1 = U U S(x~) C A (5.10)

a � fl
u x~ C B(k

1,51
)

has diem Eter diam (G~) � 
2 C . Defining the set S(B (k

1,51
)) =

U S (x~), (5.10) can also be written
x

= U S(B (k
1~5~
))

n,m � n
1

Note also that since all spaces are Polish , measurability of Sn implies

B(k,6) C Define the set

i I
A~ = fl G

~ 
= U fl S~ (B~ (k~~S ~~

j=l n,n~ n1 j=l

and let A1 denote the closure of A~ (A
1 

w ill play the role of

Hampel ’s A~ in our case). The A
1 are closed and monotone decreasing

since A~ > A
1~ 1 

and diam A
i 
� 2€~ 4 0. Furthermore , the sets A

i

are nonempty as can be seen as follows : For f ixed i and n � we

24
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a

have from (5.9) that

p.(x:S~ (x~) CA 1
) p.(x:S (x~)€A )

� ~ (x :S~ (x’~) £ 

j
fl
1
Sn

(B
n
(k
i~
S
i

) ) )

i
� p.(x:x~€ flB~(k~~o~)) -, 1 (5.11)

j=l

and hence A1 cannot be empty. Since A is complete and the A~ are

closed , monotone decreasing, and empty , from the Cantor intersection theorem,

there exists a single point, say S~,(p.), such that A~ 4 S,,(~). Coupled

with (5. ~~.), this proves the lemma.

Corollar i 5.1: Given (5 ), p., S~ 4.~) as In Lemma 5.3, given € > 0

there e~ i~ :s a 8, k, no such that if a � a
0 and

— k k

x~
’
~ 

~ ‘C 6

then d(S~~
._ ),S(x~)) ‘C C.

Proof.

Using the notation of the previo~ni proof , choose I so large tha t

E � 2Ej a~d set 6 
~i’ 

n � n
1, ~~~~~~~ 

p.
1
) ‘C implies

C G
1 

= ~~~~S(B (k
i ,51

)) DA~. Since S C ,p.) € A 1 and

diam G
1 < 2€~~ this implies d(S

n
(x
~
’)Smç)) ‘C � ~, completing the

proof.
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~~~~~~~~~~~~~~~~~~~~~~~~~



—~ —_- -—-, .*~ -. -. -~~ - - -~~~~~~~~~~

The previous corollary simply makes explicit a fact useful for the

next result that is obvious in Hampel’s case.

The following theorem is the main result of this paper and is the

analog to Hampel’s theorem for stationary and ergodic processes and the

general sequence of estimators here considered. We show that continuity

of Cs~) implies asymptotically robust and continuity of the S~

considered as point functions implies small sample robust.

The or-~n’ 5.1

Let a sequence of estimators (s) and a p. € be such that

(I) S~ is continuous as a point function on for every a,

t ha t  is, given a, x
1
~t 4~~, € > 0, there exists a 6 = S(fl ,X

n
,C)

such that p ( x ~~ ,y ’~) � 6 implIes d(S (x”),S(y~)) ‘C C.

(11) r5 1  is continuous a t  p . ,  p. s ta t ionary and ergodic.

Then 
~~~ is robust for at p..

Com~’ents. Condition (I) might appear different from that of

Hampel since we use P~ (X
n ,Y n

) = n~~~ E 

~~~ 
.p(x

i
,y

i) and he uses

= max
1
p(x

1
,y
1
). These metrics generate the same (product)

topology , however, and hence the notions are equivalent. Recall also

that (ii) is weaker than Hampel’s corresponding assumption and the

observation processes are far more general , but that our conclusion is

in general slightly weaker. W~ also note that for large a our proof

parallels Hampel’s by proving condition (B). For small n, however,

robustness is proved directly from C i ) and our proof is simpler than

Hampel ’ a.
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Proof.

First choose C> 0, n >  0 for property (B). From Lemma 5.1 and

Its corollary there exists S,,,(p.), 6~
> 0, n1, k such that for

F n � n
1

‘C ~ d(S (p.),S ( x ”)) < €12 . (5.12)

From Lemma 3.1 there exists an n
0
� n

1 so large that if n~~

5 )  ‘C ,

For a � n0 define F = (xn :flk(. 
~,k) ‘C and note that

� i- -i and if x~ € F , y~ € c?, then if < 
~o 

we

have

+ ~~G~~
k
~~

k) � 26~

and hence from (5. 12), d(S~~4~),S (y’~))  < €/2 and therefore

d ( S x ~),S ( y ’~)) � d(S~~(Xfl ) , S~~(p.)) + d(S~,,L),S (y
fl ))  ~ €

proving c tndition (B) is asymptoticall y satisfied and hence by Lemma 5.2

~s~) is ~sym ptotically robust at p..

We next prove that (i) implies that (sn) is small sample robust

at p ., which by Lemma 5.1 will complete the proof. Given € > 0 as

before and any a, there exists from Parthasarathy (1967) Thin. 3.2, Ch. 3,

a compact set K such that
n

> 1—€/4 , v~ (K) > l—€/4

Since S~ :fl’~ -. A , it is uniformly continuous on K and hence there is

27 
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a 6 such that for x’~,y~ € K~ , P~(X
n ,Yn) ‘C 6~~ implies

d (S (x”),S (y~)) ‘C C. Choose 5 so small that 5 � min(6~ ,i=l ... ,n0,C
2/4)

and let p C 
~~~~~~~ 

yield p~~ ,v) = E~P(X0~Y0
) � 6. We have using the

Chebychev inequality that

> C) ~ p.
fl (KC)+vfl

(K
C
)+p(x ,y:p (x1’,y 11

) > 5 )

+ ~~~~~~~~~~~~~~~~ 6
1/2 ) €/2 + ~l/2

and hence

n —l n — lfl (~ S ,v S  ) � C
d a a

completlng the proof.

T~~- ~- i ly  point in the preceding development where ergod icity was

required was in the use of Lemma 3.1 in Lemma 5.3 ensuring sample

d1strIbutir~rs of the process p. converged to the actual distribution of

p. in the ser .se of (3.3) . The result ing consistency of (s) at p. 
-

was then in turn used to prove asymptotic robustness at .. In particular ,

if the process is ergodic , but we allow the processes v of

Theorem 3.1 to be stationary but not necessarily ergodic , then the entire

proof goes through as before giving the following.

Corollary 5.2: Given the conditions of Theorem 5.1, then C S) is robust

for at p..

That robustness for the class of ergodic processes implies robustness

for the class of stationary processes also can be seen from the ergodic

decomposition theorem of Rohlin (1949) which states , roughly , tha t every

stationary nonergodic process is a mixture of ergodic processes , that is ,

28
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can be viewed as nature first selecting an ergodic process (unknown to

the observer) and then sending a sample function from the ergodic

( - 

process. Thus , if v is stationary , the observer will actually see

some unknown ergodic compoim nt , say v
9
, of v and hence robustness for

ergodic processes will ensure robustness for stationary nonergodic

processes.

Corollary 5.3: Let S:~~ .+ A be such that S is strongly continuous at

p. € ~r m d  S (x~) = Se. ) is a continuous mapping from ~fl to A.

Then ~S is robust for 1% at ,.- .

Note that if S is strongly continuous f or all p., then

S ( ’ c~ ) 
~
- - S_ ,~) is automatically continuous as a point function from

(2.6).

Aaa~~gous to Hacapel’s Lemma 3 and corollary we have the following.

Lemma 5.4 
-

If S~~ is robust at ,~~ C 1% and consistent for S,,ç) at all

€ -
~~ i~ a ~ neighborhood of p. , then S~ L) is weakly continuous

at — .

Proof.

Since (se) is robust, given C> 0 there isa 8>0 such that

if ~ L,~-) ‘C 6, then fi~ (p.
1%
S

fl

h
,v

fl
S

fl

h
) ‘C C , all n. By consistency ,

for 6 small enough

h a  p.(x:d(S (x~
’),S,(~ ) )>  C) = 0

lim v(y:d(S (y T’),S,, (v)) > €) = 0
n-+~~
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and hence if a1 is the measure on (A,
~A
) assigning probability one

to the point S~~~.) and that assigning probability one to

S ,(v),

fld4~~
S

fl
,al
) -, 0

lld~~~sfl
,a2
) .4 0

and hence 
~d (al,a2 ) � C. Since a

1 and a2 are degenerate, however,

~d ‘a1 ~~2) ~ only if d (S~ (L. ) , S~ (v)) � C , proving the lemma.

Coroilar-v 5.4: If (S
n

) Is- robust and continuous for all C 1T~~,

then SL )  is weakly continuous at all p..
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6. Discussion and Applications

Our approach allows the construction of robust estimators for

parameters included in the K
th 

order (K finite, fixed) restriction

(flKj1jK) of an ergodic stationary process [n,p.,xJ. Such parameters

are the moments of order less than or equal to K.

The M—estimation S~,(~x) of a scalar parameter S included in

(flK~~K p.K) will be now the solution (if it exists) of the expression

• [Huber (1964), Huber (1972)]

f ~ (x1,...,x~ ,S~ (p.))p.k(dx1,...,dx~) = 0 (6.1)

0

As in th~ i . i .d .  case, the sequence of estimators (sn) defined by ~
n-K

(S: L 
~~~~~~~~~~~~~~~ 

= 0) is robust If the solution is (6.1) Is

unique a~J 1 is bounded. In other words , one should look for bounded ,
t
~smoo 4~l,

t
~ fur ~ctions v with zero expectation.

For :~—e robust estimation of a location parameter , in par t icular,

M—es:iaa :rs , L—estimators or R—estimators , can be used again [Huber

(l972)~~, -there the first order restriction [fl
1’
,~~~,p.

1’] of the ergodlc

• statIonar~ process [n,~ ,x] is considered. For the M—estlmators , we

th K K Kmay use t-e K restriction [n ,53~ ,,* ] Instead and recover the

estimate from the expressicz~:

,f ~~~~~~~~~~~~~~~~~~~~~~ IL
X
(dxl,...,dxK

) = 0 (6.2)

The asymptotic distribution of the estimate S~,,(,&) can be found by

methods similar to the ones used by Huber (1964).

31



New estimators determined through new functionals of the data may

be considered , where the properties of the functionals may be determined

through the conditions in Theorem 5.1.

H0—31s52-PPK—tmg P. ~~~~~~~ni—Kaz~~os
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APPENDIX A: Equations (2.1) and (2.3*) are actually minima . (The

proof is due to P.C. Shields.)

Since 0 and hence fi are complete , separable metric spaces,

any measure p. on (fi ~~~ is tight, that is, for any € >  0 there

is a compact set F such that p.(F) ~ 1~ € [Parthassarathy (1967),

Thin. 3.2, p. 29]. If one has a family of measures such that given €

there is a compact set F such that all members of the family place
I

measure at least 1 — ~ on F, then the family is compact In the weak

topology ,,Porthasarathy (1967), Tha. 6.7, p. 47]. Given p., v choose

compact F € such that p .o’) � 1 - €12, v(F) � 1 — €12, then if

p e~~~ C~,’), 
p(FX F) � 1 — € and FX F is compact. Thus P (1,& ,v)

is compaq—: in the weak topology and a sequence PnC P(p..v) such that

/ E p(X0,Y0
) ~ ~ (p.,v) + 1/n

n -

will hive a subsequence —— say 
~n -— that converges in the weak topology

to a limiting p. The limit p € P (p.,y) and E p(X
0
,Y
0
) = p(p.,v) ,

complet ing the proof. The same argument applied to (c? ,~~~ ) shows that

p Is also actually a minimum.
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in a book on the use of nonparamet ric procedures i n Comun ica t ion
Systems. A feature selection problem was stud i ed , when servera l
distance measures are used as discrimination criteria. A . sequential
procedure for clus tered data was proposed and ana l yzed . Hampe l ‘s
genera l qu ali tat ive defini t ion of robu stne ss of sequences of
e s t i ma tors on memory less observa t ion processes was generalized to
stationary processes. The constructive analysis of robustness comp le ted
by the author is be i ng used now in the performance analysis of communicat on
Networks at Bell Laboratories.
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